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Introduction

• All fundamental theories of physics seem to rely on local symmetries.

• The list includes gauge theories and gravity.

• “Physics” = IR physics: this is the one we can test.

• There is an obvious big WHY?

• A hint about gauge theories may come from the “weak coupling intu-
ition”: without non-trivial vectors with gauge symmetries we cannot con-
struct UV complete theories.

• There are many holes in this hint: the UV can be strongly coupled, the
UV may be not a QFT, etc.

• H. Nielsen argued that gauge theories are generic low energy “artifacts”
of non-gauge high-energy QFTs.

• It is not known whether such a statement can be true in general.
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Gravity

• The other known interaction (gravity) has also a local invariance, but of

quite a different form.

• The modern theory was born by trying to establish a theory of general

covariance.

• The underlying invariance (diff invariance) however is not unique to grav-

ity.

• Many QFTs can be diff. invariant without a fundamental graviton field.

A common example is Nambu-Goto theory, a non-linear theory of scalars.

• It was Einstein’s insight that by connecting the metric to diff invariance

he linked general covariance and gravity.

• Unlike gauge theories, gravity as an IR theory is non-renormalizable.
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• After efforts that span more than 50 years, the only examples of a quan-

tized gravitational theory (with a semiclassical limit) are those included in

the framework of string theory.

• This type of quantization of gravity is at the cost of including an “infinite

number” of additional degrees of freedom and a new scale below the Planck

scale: the string scale.

• Many people believe that (perturbative) string theory provides a UV

complete theory of quantum gravity.

• This is false: (perturbative) string theory provides a (consistent) cutoff

theory of quantum gravity.

• The cutoff is the Planck scale: string theory cannot answer questions

involving (transfers of ) energy at or beyond the Planck scale.
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Attempts at quantizing gravity

• Many attempts in the past tried to capitalize on a winning strategy:

resolving non-renormalizable interactions.

• This has worked several times. Famous and very distinct examples are

the weak interactions and the strong interactions.

• The low-energy theory of the strong interactions is the IR-free (but non-

renormalizable) theory of pions, that reminds quite well the problems with

quantizing gravity.

• In that theory, it was eventually understood, that one can quantize the

low energy degrees of freedom (pions), but this description has a cutoff,

Λ ∼ GeV .
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• Instead, the high-energy degrees of freedom (quarks) are different and the

QFT associated to them is UV complete (and effectively strongly-coupled

in the IR)

• By analogy, this would suggest that the non-renormalizability of the gravi-

ton appears because of its compositeness: the graviton is a low-energy

bound-state.∗

• Many attempts were made to construct gravity theories where the gravi-

ton is a composite field, made out of more elementary fields, of all types:

scalars, fermions, vectors etc.

• All such attempts failed to go beyond the classical and provide a dynamical

explanation of why the bound state appears “feature-less” at low energies.

∗This is not always true as we shall see.
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• To contrast: In low-energy string effective actions (generalized gravity)

the cutoff scale is the string scale.

• If the string dynamics is treated fully (and not only the low energy modes),

then the cutoff becomes the Planck scale.

• In the string description there seems to be no hint of compositeness for

the graviton.
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The Weinberg-Witten nail

• The original version of the WW theorem assumes Lorentz invariance and

a Lorentz covariant Energy-Momentum tensor.

• It proceeds to prove that no massless particle with spin S > 1 can couple

to the stress tensor and no particles with S > 1/2 to a global conserved

current.

• This does not rule out a theory that contains a “fundamental” massless

graviton, as there exists a loop-hole: Conservation of the stress tensor

makes it non-covariant, and projecting on helicity-2 is also non-covariant.

• There are also other ways of avoiding the theorem:

• In the case of massless vectors the statement says that no massless vector

bound-states can couple to a conserved Lorentz-covariant global current.
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• This is avoided in standard non-abelian gauge theories as the conserved

current is not Lorentz-covariant (only up to a gauge transformation).

• There are more interesting counter-examples:

∗ At the lower end of the conformal window in N=1 sQCD: the ρ-mesons

become massless but also develop a gauge invariance at the same time.
Komargodski

• These are the “magnetic” gauge bosons of Seiberg.

• Their effective theory is renormalizable (being a standard non-abelian

gauge theory).
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• A final caveat: Lorentz invariance is crucial: otherwise the notion of

masslessness is not well-defined. (even in dS or AdS the notion changes)

• In conclusion: WW can be evaded but it is a serious litmus test for all

emergent graviton theories.

• We shall find out that although the essence of the WW theorem remains

true, the effective theory for the massless graviton is none-of the massive

gravity theories discussed, with all of their problems.

• Instead we shall find a fully covariant gravity theory where the mass of

the graviton is due to the “(gravitational) Higgs effect”.
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The energy momentum tensor

• One would generically expect that the state generated out of the vacuum

by the (conserved) energy-momentum tensor has the quantum numbers of

the graviton

Tµν(p)|0⟩ ≡ |ϵµν, p⟩

• It is transverse because of energy conservation and can be made traceless.

• In weakly-coupled theories, this is a multi-particle state and therefore its

interactions are expected to be non-local.

• If however, the interactions are strong and make this state a true tightly-

bound state with a “size” L, then maybe we can reproduce gravity at scales

≫ L.

• In particular, in the limit of infinitely-strong interactions we would expect

to obtain a good point-like interaction theory for this bound-state graviton.
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• Of course, WW constrains such bound-states but we will come later to

such constraints, as they can be subtle.

• We must remember however that, in the presence of strong attractive

interactions in the spin-two channel, there will be, generically speaking, a

tower of states generated from the Tµν acting on |0⟩.

• If the theory is not conformal, such a spectrum will be discrete, and would

associated with the (generically complex) poles of the two-point function

of the stress tensor.

• Again, generically speaking, many such states will be unstable.

• If the theory is conformal, such states will form a continuum.

• This is the case in AdS/CFT.
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The AdS/CFT paradigm

• AdS/CFT relates QFT to string theory and therefore to a theory of

“quantum gravity”

• That a gauge theory at large-N can be described by a weakly coupled

string theory was anticipated since the work of ’t Hooft.

• There were twosurprises however:

♠ The string theory lives in higher than 4 dimensions.

♠ The associated effective theory is a theory of (generalized) gravity.

• Emergent dimensions are the avatar of the large N limit. Eigenvalue

distributions become continuous extra dimensions as it was already seen in

simpler matrix models.

• It is still a puzzle however, why the higher-dimensional theory has diffeo-

morphism invariance.

8



• This is seen acutely in attempts to reconstruct the bulk (gravity) theory

from the QFT.
S. S. Lee and collaborators

• The masslessness of the higher-dimensional graviton was a related sur-

prise: as we understand it now, it is related to energy conservation of the

dual QFT.
Kiritsis, Adams+Aharony+Karch

• The holographic duality essentially implements what we discussed already:

the graviton (and all other bulk fields) are composites of (generalized)

gluons.

• Strong coupling in the QFT, as expected, was important in making the

gravitational theory local (by suppressing string corrections)

• The other important ingredient is the large-N limit. It makes bulk fields

(composites) interact weakly (despite the fact that the constituents interact

strongly)
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• It is important to understand that strongly-interacting gravitons have
Ms ≃ MP and therefore their effective theory is badly non-local and nowhere
near the semiclassical gravity we like.

We have learned that:
♠ Strong coupling in QFT makes gravitons tightly bound states.

♠ Large N makes gravitons weakly interacting.

and both of the above give an effective semiclassical theory of (composite)
quantum gravity.

• AdS/CFT is a conjectured duality at all λ,N and claims that the QFT
and the string theory are exactly dual.

• We believe that the duality can be used to define string theory and
gravity non-perturbatively, by using the QFT to define the physics beyond
the obvious cutoff of the string theory.

• This however, needs to be understood much better and it is a very
difficult question, as in many cases it requires controlling physics beyond
the perturbative.
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WW versus AdS/CFT

• Is AdS/CFT compatible with the WW theorem?

• The WW theorem involves a subtle limit to define the helicity amplitudes
that determine the couplings of massless states to the stress tensor or a
local current.

• This limiting procedure is not valid in theories where the states form a
continuum.

• This is the case in AdS/CFT.

• From the point of view of the QFT, the effective gravitational coupling
is non-local.

• Therefore the WW-theorem does not apply to this case.

• What about not CFTs?
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WW versus nAdS/nCFT

• Consider a familiar example: four-dimensional, large-N YM theory.

• Its string-theory dual is stringy near the AdS-boundary (weak QFT cou-

pling).

• We expect a gravitational description at low energies (strong QFT cou-

pling).

• The theory has a gap and a discrete spectrum and therefore the emergent

gravitational interactions must be local

• Also gravity must be weakly coupled (and it is due to large N).

• The low energy spectrum contains two stable (lightest) massive scalars,

and a massive graviton.
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• A massive graviton is compatible with WW.

• It is also compatible with a fully diff invariant theory of a massless graviton

in 5 dimensions.

• The 4d graviton mass is due to the non-trivial 5d background, hence a

“Higgs effect”.

• The above gives some credence to the idea that heavy-ion collisions form

(unstable) black holes of a massive gravity theory that quickly Hawking

evaporate.
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The stress tensor “state” as a (classical)

dynamical metric

• We would like to implement directly the idea of an emergent graviton as
the state generated by the energy-momentum tensor.

• As a warm-up, we consider a translationally invariant QFT at a fixed
background metric gµν and a scalar source J coupled to a scalar operator
O (for purposes of illustration).

• The presence of an arbitrary background metric gµν(x) breaks translation
invariance.

• A redefinition of the derivative→ covariant derivative “restores” energy-
momentum conservation (in the absence of other non-constant sources):

Tµν ≡
1
√
g

δS(g, J)

δgµν
, ∇µ

g⟨Tµν⟩ = 0
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where S(g, J) is the action of the theory coupled to the fixed metric g and

to the scalar source J.

• Consider the Schwinger functional

e−W (gµν,J) =
∫

Dϕ e−S(ϕ,gµν,J)

• gµν is an arbitrary background metric, ϕ are the “quantum fields.

• We assume the presence of a cutoff that preserves diff invariance so that

the quantities above are finite.

• This is tricky business but for the moment we can have dim-reg in mind.

• Sometimes W (g, J) is unique (modulo renormalization) at the linearized

level, sometimes it is not (improvement).

11-



• Moreover there are ambiguities at the non-linear level.

• One can add diff-invariant functionals of the curvature for example.

• These correspond to “improvements” (ie alternative definitions of the

stress tensor), both at the linear as also the non-linear level.

• We will call all of this “the scheme dependence” of the Schwinger func-

tional.

• W (g, J) is now diff-invariant:

W (g′µν(x
′), J(x′)) = W (gµν(x), J(x)) , g′µν = gρσ

∂xρ

∂x′µ
∂xσ

∂x′ν

• W encodes the connected energy-momentum tensor and scalar correla-

tions of the the original theory with metric g.
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1
√
g

δW (g)

δgµν

∣∣∣∣ g=g
J=0

= ⟨Tµν⟩ ,
δW (g)

δJ

∣∣∣∣ g=g
J=0

= ⟨O⟩

• Therefore W can be expanded in the sources as follows

W (g) =
∫

ddx
√
g [(gµν − gµν)(x)⟨Tµν(x)⟩+ J(x)⟨O(x)⟩]+

+
1

2!

∫
ddx1 ddx2

√
g(x1)

√
g(x2) (gµν−gµν)(x1)(g

ρσ−gρσ)(x2)⟨Tµν(x1)Tρσ(x2)⟩+· · ·

• The (quantum) vev of the stress tensor is:

hµν ≡
1

√
det g

δW (g, J)

δgµν

and we will use it to define the associated effective action:

Γ(h, J, g) ≡ −W (g, J) +
∫

d4x
√
g hµν (gµν − gµν)

via a modified Legendre transform.
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• Γ is the generating functional of 1-PI energy-momentum tensor correla-
tors and is extremal,

δΓ(hµν, J)

δhµν

∣∣∣∣
g=g

= 0 , Γ(h∗µν, J)
∣∣∣∣
g=g

= W (g, J)

• The description above in terms of the energy-momentum tensor “effective
action” is a theory of (classical) dynamical gravity.

• The dynamical metric is the energy-momentum tensor vev.

• Other sources like J represent energy-momentum currying sources.

• This description is fully diff-invariant by construction.

• The interactions mediated by this graviton are essentially summarizing
exchanges of the energy-momentum tensor as we had postulated.

• The emergent graviton propagator (by construction) is generated by the
poles of the energy-momentum tensor of the original theory.
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An explicit IR parametrization

• We assume that the theory has a uniform mass gap for simplicity.

• We will now parametrize the Schwinger functional W in an IR expansion

below the mass gap as

W (g, J) =
∫ √

g

[
−V (J) +M2(J)R(g)−

Z(J)

2
(∂J)2 +O(∂4)

]

• We calculate

hµν =
V

2
gµν +M2Gµν − (∇µ∇ν − gµν�)M2 −

1

2
Tµν + · · ·

Gµν = Rµν −
1

2
R gµν , Tµν = Z(J)

(
∂µJ∂νJ −

1

2
gµν(∂J)

2
)

• The hµν appears uniquely determined, but there is a initial+boundary

condition dependence in this formula.
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• Note that for arbitrary external source J, this energy-momentum tensor

vev is not conserved.

∇g
µhµν =

1

2

[
V (J)′ − Z(J)�gJ −

1

2
Z′(J)(∂J)2 − (M(J)2)′ R

]
∂νJ

• We may now solve gµν as a function of hµν:

gµν = h̃µν − δh̃µν , h̃µν =
2

V
hµν

δh̃µν =
2

V

[
M2G̃µν − (∇̃µ∇̃ν − h̃µν�̃)M2

]
−

1

V
T̃µν + · · ·

• All the tensors above are written in terms of h̃µν.

• h̃µν is dimensionless and plays the role of the emergent dynamical metric.
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• We may rewrite it as an Einstein equation coupled to “matter”

M2 G̃µν =
V (J)

2

(
h̃µν − gµν

)
+

1

2
T̃µν(J) + (∇̃µ∇̃ν − h̃µν�̃)M(J)2 + · · ·

• The effective gravitational equation above is equivalent to δΓ
δhµν

= 0.

• The emergent graviton is massless.

• The background metric gµν appears as an external source and contributes
like a cosmological constant.

• Other sources act as sources of energy and momentum.

• This description is non-singular only if V ̸= 0.

• This is also why the WW is evaded.

• If V = 0, then the gravitational theory is non-local.
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Gravitons from hidden sectors

• We have presented so far a proof of principle, on how to describe an

emergent graviton that summarizes interactions in a QFT mediated by an

energy-momentum tensor exchange.

• We have seen how the full non-linear diff-invariance and dynamical gravity

appear.

• It is, in a sense, this mechanism which is responsible for the emergence of

gravity in the dual description of a holographic theory, with a few caveats:

♠ Instead of a single four-dimensional graviton we have an infinite number,

one for each pole of the two-point correlator.

♠ They combine into a higher-dimensional graviton in the appropriate num-

ber of dimensions.

♠ There are no easy detailed calculations that show this in a general holo-

graphic QFT (A proof for AdS/CFT?).
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• However, in the real world, the graviton that couples to the SM stress

tensor appears to be an additional dynamical field.

• How can we describe this as an emergent degree of freedom?

♠ It can emerge in the standard way from a “hidden sector”.

♠ The hidden sector will be coupled to the SM at some high scale.

♠ Only a few interactions will survive in the IR between the two theories

as all interactions will be IR-irrelevant.

♠ This will match with the IR-freedom and non-renormalizability of gravity.
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• If we want this graviton to be tightly bound and weakly coupled, then this

hidden sector theory must be a large-N, strongly coupled (ie holographic)

QFT.

• We are led therefore to couple a large-N theory to the SM in a UV

complete fashion.

• There is a unique way to do this without a “messenger sector”: Couple

the unique gauge invariant relevant operator of the standard model (the

Higgs mass operator) to a scalar operator of the hidden theory with ∆ ≤ 2.
Quiros+Delgado

• There are various reasons to assume that the hidden theory will not have

such a scalar operator.

• One therefore should postulate a massive messenger sector to couple the

two theories together.
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The linearized coupling

• We therefore consider a coupling between the “hidden theory” and the

“visible theory” of the form

Sint =
∫

d4x
(
λTµν(x) T̂

µν(x) + λ′T(x)T̂(x)
)

at a high scale M . This is an irrelevant coupling with λ ∼ M−4.

• Tµν is the SM energy-momentum tensor, T̂µν is the hidden one.

• We also define

c ≡
λ′

λ
, Tµν ≡ Tµν + cT ηµν

so that

Sint = λ
∫

d4xTµν(x) T̂
µν(x)

• Note that the expectation value of the hidden energy momentum tensor,

acts as an external metric for the SM.

λ
∫

d4x Tµν(x) T̂
µν(x) →

∫
d4x Tµν(x)h

µν
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• To proceed further we write for the Schwinger functional

e−W (J ) =
∫
[DΦ][DΦ̂] e−Svis(Φ,J )−Shid(Φ̂)−λ

∫
d4xTµν(x) T̂µν(x)

=
∫
[DΦ][DΦ̂] e−Svis(Φ,J )−Shid(Φ̂)

[
1− λ

∫
d4xTµν(x) T̂

µν(x)

+
1

2
λ2

∫
d4x1d

4x2Tµν(x1)Tρσ(x2)T̂
µν(x1)T̂

ρσ(x2) +O(λ3)

]
We will also use

⟨T̂µν(x)⟩(0) = Λ̂ ηµν

where Λ̂ is a dimension-4 constant and the connected correlator

Ĝµν,ρσ(x1 − x2) = ⟨T̂µν(x1) T̂
ρσ(x2)⟩

(0)
hid

14-



• We obtain

e−W (J ) = e−W
(0)
hid

∫
[DΦ] e−Svis(Φ,J )

[
1− λΛ̂

∫
d4xT(x)

+
1

2
λ2Λ̂2

∫
d4x1d

4x2T(x1)T(x2)

+
1

2
λ2

∫
d4x1d

4x2Tµν(x1)Tρσ(x2)Ĝ
µν,ρσ(x1 − x2) +O(λ3)

]

• The coupling has introduced the following effective interactions in the

visible theory:

δSvis = λΛ̂
∫

d4xT(x)−
1

2
λ2

∫
d4x1d

4x2Tµν(x1)Tρσ(x2) Ĝ
µν,ρσ(x1 − x2)

• The second term can be written in momentum space as

δSTT
vis ≡ −

1

2

λ2

(2π)4

∫
d4kTµν(−k)Tρσ(k) Ĝ

µν,ρσ(k)

and is an induced quadratic energy-momentum interaction in the visible

theory.
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• This interaction can be reformulated in terms of a classical spin-2 field

hµν

δSTT
eff =

∫
d4k

[
−hµν(−k)Tµν(k) +

(2π)4

2λ2
hµν(−k) Pµν,ρσ(k) hρσ(k)

]

• The inverse propagator Pµν,ρσ(k) of the emerging spin-2 field is the inverse

of the hidden sector 2-point function Ĝµν,ρσ(k).

• Integrating out hµν we obtain our original expression.

• It remains to examine under what circumstances Pµν,ρσ(k) is well-defined

and what tensor structures it involves.

• We assume that the hidden theory is a Lorentz-invariant QFT with a

mass gap.
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• Then the Ward identities associated with translations imply that the
general form of the 2-point function Ĝµν,ρσ(k) is

Ĝµν,ρσ(k) = Λ̂
(
−ηµνηρσ+ηµρηνσ+ηµσηρν

)
+b̂(k2)Πµνρσ(k)+ĉ(k2)πµν(k)πρσ(k)

with

πµν = ηµν −
kµkν

k2
, Πµν,ρσ(k) = πµρ(k)πνσ(k) + πµσ(k)πνρ(k)

kµ πµν = kµ Πµν,ρσ = 0

• The first term on the RHS arises from a contact term contribution to
the Ward identity.

• The only combination of tensor structures which is analytic at quadratic
order in momentum, in the long-wavelength limit k2 → 0, is the one that
has

b̂(k2) = b̂0k
2 +O(k4) , ĉ(k2) = −2b̂0k

2 +O(k4)
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• In that case, the low-momentum expansion of Ĝµνρσ(k) up to quadratic

order in momentum is

Ĝµνρσ(k) = Λ̂
(
− ηµνηρσ + ηµρηνσ + ηµσηρν

)

+b̂0

[
k2 (ηµρηνσ + ηµσηνρ − 2ηµνηρσ)

−ηµρkνkσ − ηνσkµkρ − ηµσkνkρ − ηνρkµkσ +2ηµνkρkσ +2ηρσkµkν
]
+O(k4)

• A term proportional to kµkνkρkσ

k2
has cancelled out.

• As a simple check, we consider the two-point function in a theory of N2

decoupled free massive bosons arranged as an N ×N matrix ϕ̂

Shidden = −
1

2

∫
d4xTr

(
∂µϕ̂ ∂µϕ̂+m2ϕ̂2

)
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• In dimensional regularization (ε = 4− d → 0) the two-point function can

be evaluated explicitly by performing the requisite Wick contractions.

Λ̂ = −
N2

64π2
Γ

(
ε

2

)
m4

b̂(k2) = −
N2

16π2
Γ

(
ε

2

) [
m2

12
k2 +

1

120
k4

]

ĉ(k2) = −
N2

16π2
Γ

(
ε

2

) [
−
m2

6
k2 +

1

20
k4

]
.

• If we use a hard momentum cutoff, Λ, we will obtain terms of order Λ4

and Λ2m2 for Λ̂ and terms of order Λ2 for the other two coefficients.

• These violate the Ward identities and should be subtracted.

• The presence of Λ̂ ̸= 0 facilitates a well-defined inversion of Ĝµνρσ(k) in

the long-wavelength limit k2 → 0.
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• If Λ̂ = 0, the two-point function has zero modes which are proportional

to kµ and is therefore not invertible.

• In this case, one must invert in the space orthogonal to the zero modes.

This gives rise to a non-local effective theory for the graviton.

• Up to quadratic order in the momentum expansion

Pµνρσ(k) = −
1

4Λ̂
(ηµνηρσ − ηµρηνσ − ηµσηνρ)

+2b̂0Λ̂
−2

[
k2

8
(ηµνηρσ − ηµρηνσ − ηµσηνρ)

+
1

8
(ηνσkµkρ + ηνρkµkσ + ηµσkνkρ + ηµρkνkσ)

]
+O(k4)

• It would seem that this is the propagator of massive graviton, but this is

an illusion.
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Emergent quadratic gravity

• We now re-define:

hµν = −hµν +
1

2
h ηµν + λΛ̂ ηµν , h = hρσηρσ

Tµν ≡ Tµν −
(2π)4

λ

(
1+

1

2λ Λ̂

)
ηµν , T = Tµνηµν

• The full effective action of the visible QFT at this order in the λ-expansion

and at the two-derivative level is

Seff = Svis +
∫

d4x

(
hµνT

µν −
1

2
hT

)
+

1

16πG

∫
d4x

[
√
g (R+Λ)

](2)
gµν=ηµν+hµν

with the identification of parameters

Λ =
Λ̂

b̂0
,

1

16πG
≡ M2

P = −
(2π)8 b̂0
λ2Λ̂2
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• The sign of Newton’s constant is positive when b̂0 is negative

• This seems to be the case with simple QFTs but we have no general

proof.

• The sign of the cosmological constant is opposite (̂b0 < 0) to the sign of

Λ̂.

• The second term, which describes the coupling of the visible QFT to

the emergent graviton, can be expressed in terms of the original energy-

momentum tensor of the visible QFT, Tµν,

∫
d4x

(
hµνT

µν −
1

2
hT

)
=

∫
d4x hµν

(
Tµν +

1

λ

(
1+

1

2λ Λ̂

)
ηµν

)

• There is a non-trivial shift of the energy due to the coupling of the two

theories.

Emergent Gravity, Elias Kiritsis
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Emerging quadratic gravity:Comments

• A coupling of stress tensors between two theories induces gravity at the

quadratic level.

• This is true in the generic case: Λ̂ ̸= 0.

• Otherwise the graviton theory is non-local.

• There is always an effective cosmological constant for the emerging grav-

ity in the local case.

• There is also a shift of the stress tensor giving a “dark” energy. It is a

reflection of the coupling to the hidden theory.
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• We parametrize λ = (2π)4 N−1M−4 where M a large scale controlling

the coupling of the two theories and N the number of colors of the hidden

theory.

• Also from calculations

b̂0 = −κN2m2 , κ ∼ O(1) , Λ̂ = ϵ N2 m4 , ϵ = ±1 (1)

We may now calculate the relevant ratios of scales

Λ

M2
P

= −
ϵ

κ2x2
,

Λdark

M2
P

= −
N
x + ϵ

2(2π)4

(1 + 4c)κ2 x2
(2)

Λdark

Λ
=

ϵNx + 1
2(2π)4

(1 + 4c)
,

M4

M4
P

=
1

κ2x3
, x ≡

M4

m4
≫ 1 (3)

• We always have semiclassical gravity, Λ ≪ M2
P .
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• If N . x then

Λ ∼ Λdark ∼ O(m2) ≪ M2 ≪ M2
P

• If x ≪ N ≪ x
3
2 then

Λ ≪ Λdark ≪ M2 ≪ M2
P

• If x
3
2 ≪ N ≪ x3 then

Λ ≪ M2 ≪ Λdark ≪ M2
P

• If N ≫ x3 then

Λ ≪ M2 ≪ M2
P ≪ Λdark

• For phenomenological purposes x . 1020 so that the messenger scale is

above experimental thresholds.

• Note that so far the SM quantum effects are not included.

Emergent Gravity, Elias Kiritsis
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The non-linear analysis

• We start again from the Schwinger functional of the coupled QFTs

e−W(J ,Ĵ ,g) =
∫

[DΦ] [DΦ̂] e
−Svisible(Φ,J ,g)−Shidden

(
Φ̂,g,Ĵ

)
−Sint

(
Oi,Ôi,g

)
• Φi and Φ̂i are respectively the (quantum) fields of the visible QFT and

the hidden Q̂FT.

• J and Ĵ are (scalar) sources in the visible and hidden theories respectively.

• For energies E ≪ M , we can integrate out the hidden theory and obtain

e−W(J ,Ĵ ,g) =
∫

[DΦ][DΦ̂] e
−Svisible(Φ,J ,g)−Shidden

(
Φ̂,Ĵ ,g

)
−Sint

=
∫

[DΦ] e−Svisible(Φ,J ,g)−W
(
Oi+Ĵ i,g,

)
• The interaction part is defined as:

Sint =
∫

d4x
√
g

∑
i

λiOi(x) Ôi(x)

17



• The functional W
(
Oi + Ĵ i, g,

)
represents the generating functional for

the hidden theory with the original fixed sources Ĵ and gµν and new dy-
namical sources Oi given by the operators of the visible theory.

• The low-energy interactions of the visible theory are now controlled by
the following action

Stotal = Svisible (Φ,J , g) +W
(
Oi + Ĵ i, g

)
• We now put the full theory on a curved manifold with metric gµν and
define again the generating functional in the presence of the background
metric as

e−W(J ,g,Ĵ ) =
∫

[DΦ] e−Svisible(Φ,J ,g)−W
(
Oi+Ĵ i,g

)
• We define

hµν ≡
1
√
g

δW
(
Oi, g, Ĵ

)
δgµν

∣∣∣∣
gµν=gµν

= ⟨T̂µν⟩

• This will eventually play the role of an emergent metric for the visible
theory.
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• The diffeomorphism invariance of the functional W (J , g, Ĵ ) is reflecting

(as usual) the translational invariance of the underlying QFT.

• We may now invert the previous equation to obtain:

gµν = gµν
(
Oi + Ĵ i, hµν

)
• It can be shown that to leading order in the derivative expansion gµν ∼
hµν.

• We define the Legendre-transformed functional

Seff(h,Φ,J , Ĵ , g) = Svis(g,Φ,J ) −
∫

d4x
√
g(Oi + Ĵ i, h)hµν×

×
[
gµν(Oi + Ĵ i, h) − gµν

]
+ W

(
Oi + Ĵ i, g(Oi + Ĵ i, h)

)

We can show that:
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♠ This functional satisfies

δSeff

δhµν

∣∣∣∣
gµν=gµν

= 0

♠ These are the emerging non-linear gravitational equations.

♠ When evaluated in the solution of the above equation gives the original

action.

, Seff

∣∣∣∣
gµν=gµν

= Svisible +W
(
Oi + Ĵ i, g

)

• Therefore, Seff(h,Φ,J , Ĵ , g) is the emergent gravity action that gener-

alizes the linearized computation.

Emergent Gravity, Elias Kiritsis
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Comments and Open ends

• The separation of the interacting theories into two pieces is not unique.

The respective gravities are related by metric redefinitions.

• The effective cosmological constant is (roughly) the sum of the two

cosmological constants.

• IN all of this we assumed that the contribution of messenger physics to

the cosmological constants is suppressed. This can be easily be case.

• The “dark energy” comes from the hidden theory.

• The emergent graviton is “massless” and the full diff-invariance intact.

• One point of view is that the WW Theorem is inapplicable because of the

presence of a non-zero cosmological constant, and therefore a non-trivial

gravitational background.
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• An alternative point of view is that effectively the graviton is “mas-

sive” (because of the cosmological constant) but the mass comes from the

“gravitational Higgs effect”.

• Additional sources in the hidden theory may provide new sources of

”dark” components: energy, matter etc.

• We can integrate-in many other fields. Most of them however will have

masses of O(M) ∼ MP . The only protected ones, are the graviton, the

universal axion and global conserved currents (graviphotons).

• When the hidden theory is a holographic QFT then this description

should transform into the brane-in-bulk (or brane-world) description.

• We can entertain the possibility of several hidden sectors. The graviton

is a combination of the stress tensors with dominant contribution from the

largest N .

• Is emergent gravity always attractive?
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• The signature of the metric in emerging gravity can change. If a stress

tensor is close to that of a cosmological constant then the signature is

Minkowski. If it is of the photonic type, it has Euclidean signature.

• Therefore we conclude that if the hidden theory is near it ground state,

it will be dominated by its cosmological constant and the signature is

Minkowski. If the hidden theory is in a highly excited state, then the

emerging metric will become of Euclidean signature.

• What is this all good for?

♠ It can provide useful intuition on how gravity can emerge

♠ It can provide credible models for cosmology, as the QFT formulation

changes the notion of what is ”natural” or ”generic”.

♠ It may lead to potential interesting models for dark energy and the

cosmological constant as well as the hierarchy problem.

Emergent Gravity, Elias Kiritsis
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THANK YOU!
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The Weinberg-Witten loop-hole

• In GR the stress tensor is not conserved but covariantly conserved.

• One can add corrections to the tress tensor (involving also the flat metric )

to make is strictly conserved and Lorentz covariant. This is however NOT a

tensor under general coordinate transformations (but this is OK with WW).

• To make a pure helicity-two state, we must project out the (unphysical)

helicity 1 and 0 states. This projection is NOT Lorentz covariant (but only

up to a gauge transformation).

• We may appeal to diff-invariance to decouple the helicity 0 and 1 states

but then we are stuck: Tµν is now NOT fully covariant.

• Therefore GR and many other theories with an explicit dynamical graviton

avoid the WW theorem.

Emergent Gravity, Elias Kiritsis

20



Translation Ward identity

• We consider a theory with Lagrangian L. For concreteness, we focus on

four-dimensional QFTs.

• Under an infinitesimal diffeomorphism generated by a vector ξµ

δξL =
1

2
(∂µξν + ∂νξµ)T

µν

δξT
µν = ξσ∂σT

µν + Tσν∂µξσ + Tµσ∂νξσ

• The invariance of the partition function Z = ei
∫
d4xL under the infinitesi-

mal translation implies the conservation equation

∂µ⟨Tµν⟩ = 0
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• Similarly, the invariance of the one-point function of the energy-momentum

tensor

⟨T ρσ(y)⟩ =
∫
DΦ ei

∫
d4xL T ρσ(y)∫

DΦ ei
∫
d4xL

under the infinitesimal translations implies the Ward identity

−i⟨∂µTµν(x)T ρσ(y)⟩+ δ(x− y)⟨∂νT ρσ(x)⟩+ ∂νδ(x− y)⟨T ρσ(x)⟩

−∂ρ (δ(x− y)⟨T νσ(x)⟩)− ∂σ (δ(x− y)⟨T ρν(x)⟩) = 0

• In addition, Lorentz invariance implies that the one-point function of the

energy-momentum tensor is

⟨Tµν(x)⟩ = aηµν

where a is a dimensionfull constant.

Consequently, we set

⟨∂νT ρσ(x)⟩ = 0
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and use it to simplify the Ward identity

i⟨∂µTµν(x)T ρσ(y)⟩ − ∂νδ(x− y)⟨T ρσ(x)⟩

+∂ρ (δ(x− y)⟨T νσ(x)⟩) + ∂σ (δ(x− y)⟨T ρν(x)⟩) = 0

• In momentum space we obtain instead:

kµ⟨Tµν(k)T ρσ(−k)⟩ = ia (−kνηρσ + kρηνσ + kσηρν)

• This allows us to deduce the 2-point function as ??

⟨Tµν(k)T ρσ(−k)⟩

= ia (−ηµνηρσ + ηµρηνσ + ηµσηρν) + b(k2)Πµνρσ(k) + c(k2)πµν(k)πρσ(k)

with

Πµνρσ(k) = πµρ(k)πνσ(k) + πµσ(k)πνρ(k) , πµν(k) = ηµν −
kµkν

k2

Emergent Gravity, Elias Kiritsis
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Aside: String theory vs the swampland

• Conjectures talk about “quantum gravity” but everyone means “string
theory”
• The (plausible) assumption that string theory is the space of large-N
strongly coupled QFTs, has an automatic avatar:

• The “swampland”corresponds to QFTs that are either weakly-coupled,
or are not at large N.
• This explains for example, the generic towers of states that appear at the
boundaries of moduli spaces.

• It also suggests why there might be no de Sitter solution in “string
theory”.

• The notion of string theory used above is certainly more general that the
conventional one based on 2d CFTs

• It involves also 3, 4, 5 and 6-dimensional CFTs.

• It might be illuminating to try to see the swampland conjectures via this
point of view.

Emergent Gravity, Elias Kiritsis
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Higher spin

• It is one of the obvious next questions to ask: what about doing this for
other operators of your QFT:

• For fields up to S = 1/2 this is a standard procedure, and has been done
in many contexts.

• The case of S = 1 is interesting as it would describe emergent gauge
theory. It is qualitatively different than the gravity case.

• When S > 2 one can again do the same procedure as here.

• In that case however for interacting theories, higher spin fields are not
conserved. The effective theory one obtains will be massive, with charac-
teristic mass the overall cutoff (in string theory this is the string scale).

• They are therefore less interesting for low-energy physics.

• In a free QFT however they are conserved and then one can construct
massless actions (of an infinite number of them)

Douglas+Razamat, Leigh
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